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Abstract
Trait-mediated behavioral responses to other species, espe-

cially predators, can have important effects on the dynamics

of populations. One effect is to modify dispersal patterns,

which in turn can modify population dynamics and species

interactions. We model a situation where a focal popula-

tion responds to disturbances created by the harvesting of

another population by increasing the rate of random dis-

persal by individuals. The model shows that in some sit-

uations this effect can result in the extinction of the focal

population, even if it is not itself subject to harvesting. This

observation suggests that it may be desirable to consider

trait-mediated effects when assessing the possible impacts

of harvesting on conservation.

Recommendations for Resource Managers
• Be aware that harvesting a given crop or population

can affect other populations because of their behavioral

responses to the harvesting activity, even if it does not

directly impose mortality on those populations or change

their interactions with other species.

• A way that harvesting activity can affect nonharvested

populations is to increase their dispersal rate. Managers

should be aware that this has the potential to cause extinc-

tion in some situations even if no other effects of harvest-

ing are present.

• For some populations, harvesting resources with which

they interact or share an environment could in princi-

ple cause both direct and indirect effects, which could

combine to have a different, perhaps greater, impact than

either one would have separately.
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1 INTRODUCTION

The way that harvesting of particular species influences communities and ecosystems via the effects

of direct interactions between species, and how direct interactions in turn influence the results of har-

vesting, has been studied fairly extensively; see, for example, Chakraborty, Pal, and Bairagi (2012),

Chaudhuri (1986), Dunn, Baskett, and Hovel (2017), and Kar (2006). However, trait-mediated inter-

actions based on indirect effects arising from behavioral responses can also be important (Schmitz,

Křivan, & Ovadia, 2004; Werner & Peacor, 2003). This idea has been studied to a considerable extent

in the context of predator–prey systems, where prey responses to the presence of predators can have

significant indirect effects (Brown, Laundré, & Gurung, 1999; Peacor & Werner, 2001). Harvesting

is in some sense a version of predation, and can have both direct and indirect effects on populations

other than those being harvested (Grüebler, Schuler, Spaar, & Naef-Daenzer, 2015). In particular, in

Grüebler et al. (2015), it was found that harvesting fields could harm grassland birds directly by increas-

ing mortality and destroying nests and could also increase their rates of dispersal. Here, we consider

the possibility that harvesting a given population may cause indirect effects on other populations, and

how such indirect effects of harvesting might influence population persistence and species interactions.

The particular scenario we explore is one where harvesting efforts targeting one species have the effect

of disturbing individuals of another, unharvested, species so that they increase their rate of random

(diffusive) movement. It is well known that in some situations, specifically in the case of populations

inhabiting bounded habitats with lethal boundaries, populations cannot persist if their diffusion rates

are too high. This can also occur in closed habitats containing both source and sink regions (see the

discussion in Cantrell & Cosner, 1991, and Cantrell & Cosner, 2003, chapter 3) In fact, even if the

habitat is closed and is heterogeneous but favorable everywhere, for competing species that have dif-

ferent diffusion rates but are otherwise ecologically identical, the slower diffuser will exclude the faster

diffuser (see Dockery, Hutson, Mischaikow, & Pernarowski, 1998). For specificity, we will consider

a situation where there are two species where the first has a negative effect on the second, the first is

harvested and the second is not, but the random movement rate of the second species increases with the

amount of effort used in harvesting the first species. Without this last trait-mediated effect, harvesting

the first population would be expected to benefit the second by reducing the negative impact from the

first. However, when the effect is present, it turns out that it can have a detrimental effect, even to the

point of causing the extinction of the second, unharvested, species.

Our modeling approach is based on a system of reaction–diffusion equations. We believe that the

scenario we describe and the details of the models are new, but the analysis of the models is a fairly

straightforward application of reaction–diffusion theory. In the second section of the paper, we describe

the models and state some background results on reaction–diffusion equations. In the third section, we

state and prove the main results about the models, then in the last section we discuss their implications.

2 MODELS AND BACKGROUND RESULTS

2.1 Models
Suppose that two species inhabit a bounded region Ω ⊆ ℝ𝑛 (where 𝑛 = 1, 2, or 3). We will assume that

both species disperse by diffusion. For technical reasons we will assume that 𝜕Ω is smooth. We will
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focus on the case where the region includes both sources and sinks but is closed so that there is no loss

of individuals by dispersal across the boundary. The case where the interior of Ω is locally a source

everywhere but there is a loss of individuals across the boundary is similar. Suppose further that the

first species, with density denoted by 𝑢, is subjected to constant effort harvesting at a rate ℎ but that

harvesting does not affect its dispersal rate, while the second species, with density denoted by 𝑣, is

not harvested but reacts to the harvesting of the first competitor by increasing its diffusion rate by an

amount proportional to ℎ. The key idea is that the activities associated with harvesting the first species

disturb individuals of the second species in a way that causes them to scatter, for example, to avoid

what they may perceive as a danger even though it does not pose an actual threat. This is an example

of a type of trait-mediated effect (see Brown et al., 1999; Peacor & Werner, 2001; Schmitz et al., 2004;

Werner & Peacor, 2003). A simple model describing such a situation is

𝜕𝑢

𝜕𝑡
= 𝐷𝑢Δ𝑢 + (𝑎(𝑥) − 𝑏𝑢 − 𝑐𝑣)𝑢 − ℎ𝑢,

𝜕𝑣

𝜕𝑡
= (𝐷𝑣 + 𝑔ℎ)Δ𝑣 + (𝑑(𝑥) − 𝑒𝑢 − 𝑓𝑣)𝑣 in Ω × (0,∞),

𝜕𝑢

𝜕𝑛
= 𝜕𝑣

𝜕𝑛
= 0 on 𝜕Ω × (0,∞).

(1)

We assume that 𝐷𝑢,𝐷𝑣, 𝑏, 𝑓 , 𝑔, and ℎ are positive constants and 𝑒 is a nonnegative constant. We

assume that the functions 𝑎(𝑥) and 𝑑(𝑥) are smooth and are positive on some subsets of Ω with positive

measure, but the spatial average of 𝑑(𝑥) is negative. The functions 𝑎(𝑥) and 𝑑(𝑥) represent the local

per capita rates of population growth or decline at location 𝑥. The interpretation of the constants in

(1) is that 𝐷𝑢 and 𝐷𝑣 are the diffusion rates of the first and second species, respectively, ℎ is the rate

of constant effort harvesting of the first species, 𝑔 represents the sensitivity of the diffusion rate of the

second species to the rate of harvesting ℎ of the first, 𝑏 and 𝑓 describe intraspecific competition leading

to logistic self-limitation, and 𝑐 represents the impact of the second species on the first. If 𝑐 > 0 the

interaction between the two species is competitive; if 𝑐 < 0 then the first species would be an omnivore

or generalist predator that preys on the second; if 𝑐 = 0 the second species has no impact on the first.

For our present purposes, it does not matter which of those cases occurs.

Reaction–diffusion models for interacting population with the general structure of (1) have been

widely studied; see, for example, Cantrell and Cosner (2003) and the references therein. Spatially

explicit models for harvesting based on reaction–diffusion equations have been studied from the view-

point of optimal control by Suzanne Lenhart and her students and other collaborators (see Ding &

Lenhart, 2009; Joshi, Herrera, Lenhart, & Neubert, 2009; Kelly, Xing, & Lenhart, 2016).

In the model (1) the diffusion rate of the second species is increased by an amount proportional to

the harvesting rate ℎ for the first species. The point of the model is that since 𝑒 ≥ 0, if harvesting the

first species had no effect on the movement of the second, then it would benefit the second species

by reducing the density of the first in the case 𝑒 > 0 and would have no impact at all on the second if

𝑒 = 0. However, we shall see that if harvesting the first species causes an increase in random movement

by the second species then harvesting the first species may be detrimental to the second, to the point

of causing its extinction. Another situation where a similar effect could occur without the presence of

sink habitats in Ω for the second species (i.e., 𝑑(𝑥) > 0) would be when there is a loss of individuals of

the second species across 𝜕Ω. In that case the density of the second species would satisfy a Dirichlet

or Robin boundary condition (𝑢 = 0 or 𝜕𝑢∕𝜕𝑛 + 𝛼𝑢 = 0 with 𝛼 > 0, respectively) instead of the no-

flux boundary condition shown in (1). The mathematical analysis and results in those cases would be

similar to those for (1).
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2.2 Background results
The general theory for reaction–diffusion models such as those appearing in (1) under classical bound-

ary conditions is well established; see, for example, Cantrell and Cosner (2003) and Cantrell, Cosner,

and Hutson (1993). In particular, solutions with nonnegative initial data remain nonnegative by the

comparison principle for single equations, and because we assume 𝑒 ≥ 0 and 𝑓 > 0 the comparison

principle for single equations implies that 𝑣 remains bounded as 𝑡 → ∞, and then since 𝑏 > 0 a similar

argument implies that 𝑢 remains bounded as 𝑡 → ∞, so that solutions exist globally in time (see Cantrell

et al., 1993, for a detailed discussion). The predictions of persistence or extinction in reaction–diffusion

equations and systems with logistic self-limitation such as (1) are determined largely by the stability

of the trivial equilibrium 0 or (0, 0) and, in the case of systems, of semitrivial equilibria of the form

(𝑢∗, 0) and (0, 𝑣∗). The stability or instability of those equilibria in turn is generally determined by the

size or sign of principal eigenvalues of their linearizations at the trivial or semitrivial equilibria. We

will state the key results, which are needed for the analysis of (1). For more details, see Cantrell and

Cosner (2003) and Cantrell et al. (1993) and their references. We start with eigenvalue problems for a

single linear equation, then turn to diffusive logistic equations, then systems.

Lemma 2.1. Assume that Ω is bounded, 𝐷 > 0, and 𝜕Ω and 𝑚(𝑥) are smooth.

1. The eigenvalue problem

𝐷Δ𝜓 + 𝑚(𝑥)𝜓 = 𝜎𝜓 in Ω (2)

with homogeneous classical (i.e., Neumann, Dirichlet, or Robin) boundary conditions has a prin-
cipal eigenvalue 𝜎0, which is the smallest eigenvalue and is characterized by having a positive
eigenfunction 𝜓0.

2. Suppose 𝑚(𝑥) > 0 on some open subset of Ω. Then, the eigenvalue problem

Δ𝜙 + 𝜆𝑚(𝑥)𝜙 = 0 in Ω (3)

has a positive principal eigenvalue 𝜆0, which is characterized by having a positive eigenfunction
𝜙0 if either the boundary conditions for (3) are Dirichlet or Robin, or they are Neumann and

∫Ω 𝑚(𝑥)𝑑𝑥 < 0.

3. Suppose 𝑚(𝑥) > 0 on some open subset of Ω and the boundary conditions for (2) and (3) are the

same, and either they are Dirichlet or Robin, or they are Neumann and ∫Ω 𝑚(𝑥)𝑑𝑥 < 0. Then 𝜎0 > 0

if and only if 𝐷 < 1∕𝜆0.

Lemma 2.1 summarizes a number of results that are stated in Cantrell and Cosner (2003), chapter 2,

specifically theorems 2.4, 2.5, and 2.6, where they are discussed in more detail, with references.

Lemma 2.2. Assume thatΩ is bounded,𝐷 > 0, and 𝜕Ω and𝑚(𝑥), 𝑝(𝑥), are smooth with 𝑝(𝑥) ≥ 𝑝0 > 0.
The diffusive logistic equation

𝜕𝑢

𝜕𝑡
= 𝐷Δ𝑢 + 𝑚(𝑥)𝑢 − 𝑝(𝑥)𝑢2 in Ω × (0,∞) (4)

with homogeneous classical (i.e., Neumann, Dirichlet, or Robin) boundary conditions and nonnegative
initial data 𝑢(𝑥, 0) has a bounded nonnegative global solution. If the principal eigenvalue 𝜎0 in (2)

(discussed in part 1 of Lemma 2.1) is positive then (4) has a unique equilibrium 𝑢∗(𝑥), which is positive
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on Ω and is globally asymptotically stable among solutions with 𝑢(𝑥, 0) > 0 on an open subset of Ω. If
𝜎0 ≤ 0 then the equilibrium 0 is globally asymptotically stable.

This lemma follows from results in Cantrell and Cosner (2003), section 3.2.

Corollary 2.1. If the hypotheses of part 3 of Lemma 2.1 are satisfied then 0 is globally asymptotically
stable among nonnegative solutions of (4) if 𝐷 ≥ 1∕𝜆0 and 𝑢∗ is globally asymptotically stable among
positive solutions of (4) if 𝐷 < 1∕𝜆0.

The following is a standard comparison result based on the maximum principle. There are more

general results of this type but this one is adequate for our current purposes. Results of this type are

discussed in Cantrell and Cosner (2003), section 1.6.7.

Lemma 2.3. Suppose that the hypotheses of Lemma 2.2 hold and that 𝑢1, 𝑢2 are nonnegative functions
that satisfy the same homogeneous classical boundary conditions and

𝜕𝑢1
𝜕𝑡

−𝐷Δ𝑢1 − 𝑚(𝑥)𝑢1 + 𝑝(𝑥)𝑢21 ≤ 𝜕𝑢2
𝜕𝑡

−𝐷Δ𝑢2 − 𝑚(𝑥)𝑢2 + 𝑝(𝑥)𝑢22 in Ω × (0,∞) (5)

with 𝑢1(𝑥, 0) ≤ 𝑢2(𝑥, 0) in Ω. Then 𝑢1(𝑥, 𝑡) ≤ 𝑢2(𝑥, 𝑡) for 𝑡 > 0.

Finally, for the system (1), we have the following condition for persistence of both populations:

Lemma 2.4. The model (1) has a global nonnegative solution for any nonnegative initial data. If it
admits semitrivial equilibria (𝑢∗, 0) and (0, 𝑣∗) and the semitrivial equilibria are both linearly unstable
then the system (1) is permanent and thus predicts that both populations will persist if their initial
densities 𝑢(𝑥, 0) and 𝑣(𝑥, 0) are both positive on open subsets of Ω.

This lemma follows from results in Cantrell et al. (1993); see also Cantrell and Cosner (2003),

chapter 4.

3 MAIN RESULTS

In this section, we will show that under suitable assumptions on the coefficients model (1) predicts

that both populations will persist if there is no harvesting but the second population will decline to

extinction if the indirect effect of harvesting on the dispersal of the second species (measured by the

product 𝑔ℎ in the model) is sufficiently large, even though there is no harvesting of the second species.

Theorem 3.1. Suppose that in the model (1) the local growth rates 𝑎(𝑥) and 𝑑(𝑥) are positive on open

subsets of Ω but ∫Ω 𝑑(𝑥)𝑑𝑥 < 0. Suppose further that the principal eigenvalues of the problems

𝐷𝑢Δ𝜓 + 𝑎(𝑥)𝜓 = 𝜎𝑎𝜓 in Ω (6)

and

𝐷𝑣Δ𝜓 + 𝑑(𝑥)𝜓 = 𝜎𝑑𝜓 in Ω (7)

with homogeneous Neumann boundary conditions are both positive, so that the semitrivial equilib-
ria (𝑢∗, 0) and (0, 𝑣∗) exist for (1) when ℎ = 0. Suppose further that the principal eigenvalues of the
problems

𝐷𝑢Δ𝜓 + (𝑎(𝑥) − 𝑐𝑣∗)𝜓 = 𝜏𝑎𝜓 in Ω (8)
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and

𝐷𝑣Δ𝜓 + (𝑑(𝑥) − 𝑒𝑢∗)𝜓 = 𝜏𝑑𝜓 in Ω (9)

with homogeneous Neumann boundary conditions are both positive. Then model (1) predicts persis-
tence of both populations when ℎ = 0 (no harvesting) but extinction of the second population if 𝑔ℎ (the
strength of the indirect effect of harvesting on the second population) is sufficiently large.

Proof. If the principal eigenvalues of (6) and (7) are both positive then Lemma 2.2 implies the existence

of semitrivial equilibria of (1) when ℎ = 0. If the principal eigenvalues of (8) and (9) are both positive

then Lemma 2.4 implies the persistence of both populations when ℎ = 0. Under the assumptions on

𝑑(𝑥), by Lemma 2.1 with 𝑚(𝑥) = 𝑑(𝑥) the eigenvalue problem (3) has a positive principal eigenvalue

𝜆0(𝑑(𝑥)), and if

𝐷𝑣 + 𝑔ℎ > 1∕𝜆0(𝑑(𝑥)) (10)

then the principal eigenvalue 𝜎0 of

(𝐷𝑣 + 𝑔ℎ)Δ𝜓 + 𝑑(𝑥)𝜓 = 𝜎𝜓 in Ω (11)

with homogeneous Neumann boundary conditions is negative. It then follows from Lemma 2.2 that if

(10) holds then 𝑤 = 0 is globally asymptotically stable among nonnegative solutions of

𝜕𝑤

𝜕𝑡
= (𝐷𝑣 + 𝑔ℎ)Δ𝑢 + 𝑑(𝑥)𝑤 − 𝑓𝑤2 in Ω × (0,∞) (12)

under homogeneous Neumann boundary conditions. Since we assume 𝑒 ≥ 0, for any nonnegative solu-

tions (𝑢, 𝑣) of (1) and 𝑤 of (12) we have

𝜕𝑣

𝜕𝑡
− (𝐷𝑣 + 𝑔ℎ)Δ𝑣 − 𝑑(𝑥)𝑣 + 𝑓𝑣2 = −𝑒𝑢𝑣

≤ 0 = 𝜕𝑤

𝜕𝑡
− (𝐷𝑣 + 𝑔ℎ)Δ𝑤 − 𝑑(𝑥)𝑤 + 𝑓𝑤2 in Ω × (0,∞).

(13)

It then follows from Lemma 2.3 that if we choose 𝑤 to be a solution of (12) with 𝑤(𝑥, 0) = 𝑣(𝑥, 0) then

𝑣(𝑥, 𝑡) ≤ 𝑤(𝑥, 𝑡) on Ω × (0,∞). Since we have 𝑤 = 0 globally asymptotically stable in (12) it follows,

by comparison, that 𝑣 → 0 as 𝑡 → ∞, implying the extinction of the second species when 𝑔ℎ is large

enough that (10) holds. ■

3.1 Remarks
In the case treated by Theorem 3.1, we assumed that the environment Ω has a closed boundary but

contains enough regions that are sinks for the second population that the average quality of habitat

within Ω (measured by the integral of 𝑑(𝑥)∕|Ω|) is negative. Analogous results follow by the same

arguments in the case of homogeneous Dirichlet or Robin boundary conditions without the assump-

tion that the average habitat quality is negative. In that case the mechanism leading to local extinction

in Ω is increased loss of individuals through the boundary of Ω rather than increased dispersal into sink

habitats. Since the mechanism leading to the prediction of extinction is trait based and does not involve

trophic interactions, the effect of harvesting on the first population does not qualitatively affect the

predictions of the model, although if there are interactions between the two species those might have

quantitative effects on the levels of harvesting (described by ℎ) and behavioral sensitivity to harvesting

(described by 𝑔) required to cause extinction. Similarly, trophic interactions with the first species would
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only have quantitative effects on the results. The reason we assumed that the effect of the first popu-

lation on the second is neutral or negative (𝑒 ≥ 0) is to demonstrate that even in that situation, where

harvesting the first population normally would be neutral or beneficial to the second, it could still result

in extinction via a trait-mediated effect. In the case of mutualists, harvesting the first population would

be directly harmful to the second, and we wanted to demonstrate that the trait-mediated effects of

harvesting the first species could by themselves harm the second without any additional effects aris-

ing from species interactions. In fact, in real situations, harvesting one population may have both the

indirect trait-mediated effect of increasing dispersal and the direct effects of increasing mortality and

decreasing reproduction of other populations (see Grüebler et al., 2015).

In Theorem 3.1, we consider a situation where the overall environment for the second (focal) pop-

ulation has enough sink areas that the spatially averaged population growth rate for the second (focal)

population is negative, so that excessive movement can result in extinction without competition or other

interspecific effects. A more subtle way in which increased movement in response to harvesting might

conceivably have a negative effect on a population might be by shifting the balance of competition. In

the classic paper Dockery et al. (1998), it was shown that in the system

𝜕𝑢

𝜕𝑡
= 𝐷𝑢Δ𝑢 + (𝑎(𝑥) − 𝑢 − 𝑣)𝑢,

𝜕𝑣

𝜕𝑡
= 𝐷𝑣Δ𝑣 + (𝑎(𝑥) − 𝑢 − 𝑣)𝑣 in Ω × (0,∞),

𝜕𝑢

𝜕𝑛
= 𝜕𝑣

𝜕𝑛
= 0 on 𝜕Ω × (0,∞),

(14)

where the competitors are ecologically identical except for diffusion rate, and where 𝑎(𝑥) is noncon-

stant, the slower diffuser excludes the faster diffuser. Suppose that the populations were harvested at an

equal rate ℎ, with 0 < 𝑎(𝑥) − ℎ everywhere so that either population could persist by itself even though

it was harvested. If the one population reacts more strongly to harvesting by increasing its diffusion

rate by a larger amount, that could shift the balance of competition. Specifically, in a system

𝜕𝑢

𝜕𝑡
= 𝐷𝑢Δ𝑢 + (𝑎(𝑥) − 𝑢 − 𝑣)𝑢 − ℎ𝑢,

𝜕𝑣

𝜕𝑡
= (𝐷𝑣 + 𝑔ℎ)Δ𝑣 + (𝑎(𝑥) − 𝑢 − 𝑣)𝑣 − ℎ𝑣 in Ω × (0,∞),

𝜕𝑢

𝜕𝑛
= 𝜕𝑣

𝜕𝑛
= 0 on 𝜕Ω × (0,∞),

(15)

with 𝐷𝑢 > 𝐷𝑣 but with 𝑔 large enough that 𝐷𝑢 < 𝐷𝑣 + 𝑔ℎ, the results of Dockery et al. (1998) imply

that the second species would exclude the first if there is no harvesting but the first species would

exclude the second with harvesting at level ℎ. The assumption that the two species are ecologically

identical is too strong for most ecological situations, although it is plausible in the evolutionary setting

in the context of pairwise invasibility analysis in adaptive dynamics as in Dockery et al. (1998). In more

general settings, the relationships between diffusion rates and levels of competition and predictions of

exclusion or coexistence have been studied in detail in He and Ni (2016). It might be possible to use

the results of He and Ni (2016) to analyze the combined direct effects of harvesting and trait-mediated

responses to harvesting on nonidentical competitors, but if so it would require another paper for the

analysis.
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4 CONCLUSIONS

Model (1) shows that in principle it is possible that a trait-mediated effect of the harvesting of one pop-

ulation on a second population, specifically increased dispersal, could have a detrimental effect on the

second population. We assumed that the trait-mediated effect was the only source of negative impact

that harvesting the first species has on the second, and that the second is not harvested at all. In our mod-

eling framework, we found that the detrimental effect could be strong enough to cause extinction of the

second population, but we assumed the average local population growth rate of the second population

was negative. We observed that in certain other special cases where the local population growth rates

of both populations are positive it is plausible that a similar effect could occur. These results suggest

that trait-mediated effects of harvesting may be significant even for those populations that are not being

harvested. Perhaps those should be considered in assessing the effects of harvesting in the context of

biological conservation. In our modeling approach, we did not try to study how trait-mediated effects

of harvesting might combine with the direct effects of harvesting on population dynamics and species

interactions. It would be interesting to study that topic further.
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